Academic organiser 2018-19 M.Sc SEMESTER I

Biochemistry: PAPER I: Chemistry and Metabolism of proteins, lipids and porphyrins Name of the lecturer: Dr.S.Padma

	per /Unit Name of the topic
	Hame of the topic
CLASSES	
AUGUST I/Unit – I: C	
of Amino Ac	
9 Proteins	unusual and non-protein
	General properties of aa, acid – base titrations, pKa Peptide
	bond – stability and formation, Primary structure, GN
	Ramachandran plots Secondary structure and motifs, α helix,
	β sheet, 3-10 helix Leucine zipper, Zinc finger, Trans-
	membrane regions, β LHL Tertiary & Quaternary structure
	(myoglobin, hemoglobin) Protein-protein interactions (actin,
	tubulin) Small peptides (glutathione, peptide hormones),
	Cyclic peptides (Gramicidin)
SEPTEMBER I/Unit – I: C	
of Amino Ac	
15 +3 extra Proteins	temperature, chaotropic agents), refolding
l/ Unit – II:	Metabolic fate of dietary proteins and amino acids
Metabolism	6 6
acids, & Pro	teins degraded to Pyruvate, Oxaloacetate Amino acids degraded
	to Acetyl-CoA, Succinyl-CoA Metabolism of branched
	chain amino acids Role of glutamate cycle information &
	circulation of ammonia
OCTOBER I/Unit–III: C	Chemistry Glucose alanine cycle, urea cycle Linking of citric acid and
of Lipids Po	
10+3 extra	metabolism of amino acids and urea metabolism
	Classification & biological significance of lipids & fatty
	acids. Steroids, Sterols, relation to vitamin D and steroid
	hormones
	normones
	Bile acids and salts, Phospholipids, Oils, waxes, isoprene
	units, Lipoproteins Glycolipids, Sphingolipids Structure &
	function of porphyrins (e.g. Heme, chlorophyll)
	Cerebrosides, gangliosides Prostaglandins, Prostacyclins
	Thromboxanes, Leukotrienes

5. Jadme.

A-Jai lad

Send & color Bio-Colorady Shaven's Chekanonda College Biocheck Chenneder (199-100.094

NOVEMBER		Fate of dietary lipids and Apo-lipoproteins Fatty acid biosynthesis, Desaturation of fatty acids Beta oxidation,
11+4	I/IV Metabolism of	breakdown of odd chain fatty acids, energy yields
	Lipids & Porphyrins	Regulation of β – oxidation, ω – oxidation & α – oxidation Metabolism of phospholipids & Sphingolipids Regulation
		and Biosynthesis of cholesterol and other steroids Fate of acetyl CoA, formation of ketone bodies and ketosis
		Biosynthesis of prostaglandins, Prostacyclins, Thromboxanes.
DECEMBER	I/IVMetabolism of	Leukotrienes Role of HDL, LDL, and Very-low-density
	Lipids & Porphyrins	lipoprotein (VLDL)and cholesterol levels in
3		bodyMetabolism of Porphyrins and associated porphyrias.

s. Padma

A failed

~

Academic Organizer (2018-19) M.Sc Biochemistry Semester-I

Paper –II, BI 102T: Chemistry and Metabolism of Carbohydrates, Vitamins and Nucleic Acids Lecturer: Dr. A.Sai padma

Month/ No of Teaching Days	Unit	Name of the topic
August 7	Unit – I: Chemistry of Carbohydrates	Classification, monosaccharides (aldoses & ketoses), Configuration and conformation of monosaccharides (pyranose & furanose, chair & boat), Reducing and optical properties of sugars, Stability of glycosidic bond disaccharides, oligosaccharides, Structural polysaccharides-cellulose, hemicellulose, pectin, lignin, chitin, chitosan, Storage polysaccharides; starch, glycogen, inulin, Steric factors in polysaccharides folding, sugar code and lectin,
September 14	Unit – IV: Chemistry and Metabolism of Vitamins	 Glycosaminoglycans, mucopolysaccharides, hyaluronic acid. Chondriotin sulfate, keratan sulfate, dermatan sulfate, Bacterial cell wall – proteoglycans and peptidoglycans Discovery of vitamins, classification, RDA Vitamin A – source, biological role, deficiency Vitamin B1 – Thiamine – source, biological role, deficiency Vitamin C – Ascorbic acid – source. Biological role, deficiency Vitamin D – Calciferol – source, biological role, deficiency Vitamin E, Vitamin K – source, biological role, deficiency.
October 12		Vitamin B2 – Riboflavin – source, biological role, deficiency Vitamin B3 – Niacin – and B5 – Pantothenic acid – sources, biological role, deficiency Vitamin B6 – Pyridoxamine – and B7 – Biotin – source, biological role, deficiency Vitamin B9 – Folic acid – and B12 – Cobalamine – source, biological role, deficiency.
	Unit – II: Metabolism of Carbohydrates	Reactions, energy balance and regulation of Glycolysis, Reactions, energy balance and regulation of Gluconeogenesis, Pyruvate dehydrogenase complex, Reactions, energy balance and regulation of TCA cycle, Pentose phosphate pathway,

[PTO]

November		regulation and significance Pasteur and Crabtree effect, Anapleurotic reactionsGlyoxylate cycle, Glucuronic acid cycle, Glycogen metabolism.
13 +5	Unit – III: Chemistry and Metabolism of Nucleic Acids:	Purines, pyrimidines, nucleosides, nucleotides, unusual bases Structure of DNA – Watson Crick Model, A- and Z- forms Supercoiling of DNA – negative and positive, linking number Structure of mRNA, tRNA, rRNA, siRNA / miRNA Properties of NA – denaturation and renaturation, Tm (factors affecting Tm) and Cot curves, Heteroduplex mapping – D loops and R loops Biosynthesis of purines and pyrimidines Degradation of purines and pyrimidines.
December 3 +1		Regulation: <i>de novo</i> , salvation, nucleotide analogs Purines, pyrimidines, nucleosides, nucleotides, unusual bases.

A failed.

Academic Organiser (2018-19)

M.Sc- Sem-I

Biochemistry: Paper-III: BI 103T: Bioanalytical Techniques

Name Of the Lecturer: M.Usha

Month & No. of teaching days	Unit	Name of the Topic
August 4	Unit – I: Spectroscopy	Beer Lambert's Law, Molar extinction coefficient, Absorption maximum, UV-Vis: Spectroscopy, Colorimetry – principle, instrumentation, application, Fluorescence Spectroscopy – principle, instrumentation, application.
September 11+1 Extra	Unit – II: Chromatography	Atomic Absorption Spectrometry – principle, instrumentation, application, NMR – principle, instrumentation application, ESR – principle, instrumentation application, CD – principle, instrumentation, application, ORD – principle, instrumentation, application, Mass spectroscopy – principle, instrumentation, application, X-ray crystallography Partitioning and counter current distribution,
October 15	Unit – III: Centrifugation and Electrophoresis	PC – principle, instrumentation, application, TLC – principle, instrumentation, application. GC – principle, instrumentation, application Ion–exchange – principle, instrumentation, application, Gel filtration (Gel exclusion chromatography) – principle, application, Affinity chromatography – principle instrumentation, application; immune precipitation, HPLC and RP-HPLC – principle, instrumentation, application. FPLC, LC – principle, instrumentation, application, Peptide mapping and N-terminal sequencing of proteins
November 19 + 7 Extra		RCF and types of rotors, Ultracentrifugation – principle, instrumentation, application, CsCl density gradient and sucrose gradient centrifugation – principle, application, Electrophoresis – moving boundary and zonal electrophoresis, Native and SDS-PAGE, IEF and 2D PAGE Agarose Gels, PFGE, Zymography, PAGE for DNA sequencing DNase-I hypersensitivity mapping, DNA-Foot-printing and Chromatin IP methods. Denaturing gels for RNA, Southern and Northern Blots Stable and radioactive isotopes, Radioactivity theory, half-life and emission spectra of
	Unit – IV: Tracer Techniques	half-life of Biologically useful isotopes - ² H, ³ H, ¹⁴ C, ¹⁸ O, ³² P, ³⁵ S, ¹²⁵ I Isotopes used for labeling proteins (³ H ¹⁴ C, ³⁵ S, ¹²⁵ I) and nucleic acids (³ H, ³² P), Detection of radioactivity by Scintillation counting, Autoradiography, Fluorography, Phosphor- imaging, applications, GM counter, gamma counter
December 2+1 Extra		Radiation hazards and safe disposal of radioactivity waste; luxometry and chemiluminescence as alternative to radioactivity. Isotope dilution method – pulse chase, Historic examples- ¹⁴ C and ¹⁸ O to study photosynthesis. Historic examples- ³² P and ³⁵ S to study viral replication (Hershey-Chase experiment). Historic examples- ¹⁴ N and ¹⁵ N in DNA replication (Meselson and Stahl experiment)

A failed

Head, Dept. of Bio-Chemistry Bhavan's Vivekananda College Sainikpuri. Secunderabad-500 094

Academic organizer (2018-19) M.SC I YEAR

Semester I, P-IV Bioenergetics and Photosynthesis Name of the lecturer: M.Usha

Month & no of	Unit	Name of the topic
teaching days	Omt	
August (15)	Unit I Bioenergetics	Elements of importance in biochemistry (H,C,N,O,P,S), types and energy of bonds and interactions(ionic, covalent, coordinate, H-bonds, Van der Waal's, hydrophobic interactions) Law of thermodynamics, Gibbs free energy Relevance of entropy and enthalpy in biological system and reactions Biological oxidation, free energy changes, redox potential & phosphate potential. High energy bonds and high energy compounds. Electron transport chain, components & importance. Mechanisms of oxidative phosphorylation. Uncouplers & inhibitors of energy transfer. Substrate level & oxidative
September (15)	Unit II Biomembranes	phosphorylation. Bioluminescence. Composition of plasma membrane and organelle membranes of plant and animal cells. Membrane dynamics. Forces stabilizing the membranes
		Membrane asymmetry- Membrane Lipids and proteins. Fluid mosaic model of membrane. Integral membrane proteins and their secondary structures- α helices and β barrels Methods of detecting transmembrane proteins, hydropathy plots. Lipid anchored membrane proteins-acyl, prenyl and GPI anchors. Artificial membranes: Liposome, micelles and vesicles Reconstitution of functional membrane systems from purified components RBC membrane.
November (10 + 4 extra)	Unit IV Photosynthesis	Photosynthesis-structure of organelles involved in photosynthesis in plants & bacteria.Light& dark reactions, Hill reaction. Light receptors-chlorophyll; light harvesting complexes, bacteriorhodopsin. Photosystem I & II and their location.Mechanism of quantum capture & energy transfer between photosystems. Proton gradients & electron transfer in chloroplasts. Cyclic and non-cyclic PhotophosphorylationC3 pathway of carbon metabolism. C4 pathway & CAM metabolism. Regulation of photosynthesis.
December (1)	Unit IV	Photorespiration

A Lai lad

Head, Dept. of Bio-Chemistr Bhavan's Vivekananda College Sainikpuri, Şecunderabad-500 094

¢

Academic organizer (2018-19) M.Sc I YEAR

Semester I, P-IV Bioenergetics and Photosynthesis Name of the lecturer: Dr. Kiranmai. P

ų.

Month &no of teaching days	Unit	Name of the topic
October		Transport across cell membranes. Fick's law.
(4)	Unit III	Types of transport- simple diffusion, passive & facilitated diffusion.
	Membrane	Active transport-primary & secondary active transport systems.
	Transport	
November (11)	Unit III	Formation of ion gradients across membrane (proton gradients in organelles) Aquaporins and ionophores. Gated channels (voltage & chemical). Group translocation. Transport ATPases, Na ⁺ /K ⁺ ATPases. ABC transporters; MDR1, CFTR Channels and pores. Bulk transport-endocytosis & exocytosis. Phosphotransferase

A. Lai lad

Head, Dept. of Bio-Chemise's Bhavan's Vivekananda College Sainikpuri, Secunderabad-500 094

Academic Organizer (2018-19) M.Sc Biochemistry II Year, Semester-III

Paper-I: BI 301T: Gene Regulation and Genetic Engineering Lecturer: Dr. A.Sai Padma

	Month/ No of		
	Teaching Days	Unit	Name of the topic
J	June 8+2	Unit – I: Gene Regulation in Prokaryotes and Viruses	Operon concept for gene regulation Positive (+ve)&Negative (-ve) control, Lac operon Attenuation – Trp operon Dual promoters – gal operon: Dual function of repressor – ara operon Phase variation in <i>Salmonella</i> flagellar protein synthesis Sporulation gene expression in <i>Bacillus</i>
	July 17+2 Unit – II: Gene Regulation in Eukaryotes		Riboswitch , Anti – termination in lambda phage Lytic / lysogenic switch in lambda phage Control of plasmid copy number Chromatin structure in active and inactive regions – DNA methylation. Eu-chromatin, histone acetylation, H2AX foci, histone code Transcriptional control – cell specific expression – promoters, enhancers, Transcription factors. Post- transcriptional control – alternative splicing RNA editing. RNA transport and stability. Translational feedback. Gene silencing – inactivation of mammalian X chromosome. Regulation by siRNA Gal operon of yeast. MAT locus and mating type switch in yeast,
	August 10 +2	Unit–III: Recombinant DNA Technology	Antigenic variation in <i>Trypanosoma</i> Enzymes in rDNA technology: Restriction endonucleases (discovery, properties).DNA and RNA polymerases Enzymes in rDNA technology: Nucleases, Kinases. Phosphatases, and Ligases Prokaryotic vectors (plasmids, cosmids, phage, phagemid, BAC) Eukaryotic vector-YAC and Expression vectors (insect, plant, mammalian cells)Shuttle vectors, Targeting vectors Construction of cDNA and genomic DNA libraries Screening a library (+ve)&(-ve) selection strategies, Preparation of probes.

Head, Dept. of Bio-Chemistry Bhavan's Vivekananda College Samikpuri, Secunderabad-500 084

of fai bd

September 14+2	Unit – IV: Genetic Engineering:	Southern blotting, Northern blotting, South-Western blotting. Creating KO cells, Cre – Lox systems. Yeast 2 hybrid Phage display Reporter genes – GFP, b – gal, luciferase Expression in heterologous systems – bacteria Expression in heterologous system – yeast cells Expression in heterologous system – insect cells Expression in heterologous system – mammalian cells	
		Molecular markers – RFLP, AFLP	
October		Random amplification of polymorphic DNA (RAPD), Short tandem	
3		repeat, Single-nucleotide polymorphism (SNP), Ribotyping Molecular markers – RFLP, AFLP.	

fai hall IA_

Head, Dept. of Bio-Chemistry Bhavan's Vivekananda College Sainikpuri, Secunderabad-500 094

Academic Organizer (2018-19) M.Sc Biochemistry, Semester-III Paper II Immunology and Immunotechnology

Lecturer: D.Rajani

1			
	Month and No of teaching days	Unit	Name of the topic
0	June 11	Unit I	Components of the Immune System History of immunology. Natural & acquired immunity, Specific & non-specific immune response. Cells & organs of immune system. Antigenic determinants, Epitopes, Haptens, Properties of strong antigens. Adjuvants – types, mode of action, and applications. Classification, structure, and biological properties of immunoglobulins. Isotypes, allotype, idiotypes. Theories of antibody formation, Generation of antibody diversity
	July 16	Unit I	Genomic rearrangements of light and heavy – chain loci in B-cells Genomic rearrangements in T-cell receptor, structure of CD3, CD4, CD8.
		Unit II	Events in Immune Response Humoral& cell-mediated immune response. Activation of T cells & B cells. Kinetics and regulation of primary and secondary immune response. MHC proteins structure & functions. Antigen processing & presentation.Transplantation immunology. Graft Versus Host Disease. Complement fixation: pathways and biological consequences. Discovery and action of interferons. Cytokines in inflammation, obesity and cancer.
	August	Unit II	Tumor immunology.
	12	Unit III	Immune Disorders Hypersensitivity; Coombs classification. Type I-V hypersensitivity. Tests for diagnosis of hypersensitivity (Coombs), Tuberculin test. Auto immune diseases; classification Study of selected auto – immune disorders of types I – V. Immuno- deficiency disorders – primary and secondary deficiencies. Gene therapy for ADA deficiency and Immunology of AIDS.
	September 14	Unit III	Immunology of AIDS Immunosuppressive drugs and agents & their mechanism of action. Immune evasion by bacteria and viruses.
		Unit IV	Immunotechnology production of polyclonal antibodies; Animals models for production of antibodies. Inhibition of Agglutination, Complement fixation test, Inhibition of complement fixation. ELISA, RIA Western Blots; use of antibody staining for FACS. Hybridoma technology – production of monoclonal antibodies; applications in research and immunotherapy.
	October 7	Unit IV	Methods of antibody purification: Salt precipitation, Affinity chromatography. Antigen- antibody binding (Equilibrium dialysis, Agglutination tests (Direct and indirect), antibody engineering Types of Vaccines Conventional vaccines - killed, attenuated, and subunit vaccines. Modern vaccines; peptide, DNA, recombinant / vector, and anti- idiotypic vaccines. Schedules of common vaccination, Benefits and adverse consequences of vaccination.

A Cai Ade 15/6/18

Head, Dept. of Bio-Chemistry Bhavan's Vivekananda Collega Shinikpuri, Secunderabad-500

Academic Organiser 2018-19 M.Sc SEMESTER III

Biochemistry: Paper-IVI-BI 307T:Cell signaling, Differentiation and methods of cell study	
Name of the lecturer: Dr.S.Padma	

MONTH/No	Paper /Unit	Name of the topic
of Classes		
JUNE	III/ UNIT I-	Structural organization of prokaryotic cells, Structural
	Ultra structure	organization of eukaryotic cells (Plant/animal cells) Ultra
11	of Cell	structure of mitochondria, chloroplast, nucleus. ER. Golgi etc
		Extracellular matrix-collagen, elastin, figrillin, fibronectin,
		laminin & proteoglycans. Integrins.
JULY	III/I	Cell junctions, Cell adhesions, Cytoskeleton-microtubules,
		microfilaments and myosin, Totipotency, General strategies of
17		cell cycle and its regulation, Early embryonic cell cycle & M-
		phase maturation factor
	III/ Unit – II:	Simple and compound microscope Phase contrast, dark field and
	Methods of Cell	polarization microscopy, Electron microscopy, SEM, TEM;
	Study	freeze fracture, Fluorescence and Confocal microscopy;
		imaging live cells, FRET and FRAP, Atomic force microscopy,
		Flow-Cytometry and cell sorting (FACS), Plant tissue culture.
AUGUST	III/II	Animal and insect tissue culture, Methods of cell
		disruption and fractionation, isolation of organelles.
14		
		Cell communication and types of signaling
		molecules, Types of receptors and their structure,
	III/ Unit III: Cell	Monomeric and trimeric G-proteins and their role, Second
	Signaling	messengers – cAMP, cGMP, Ca ⁺² , calmodulin, inositol,
		NO, Introduction of signaling components in bacteria,
		Chemotaxis, Plant signaling system an over view.
SEPTEMBER	III/III	Stress signaling in plants (biotic), Stress signaling in plants
		(abiotic), Plants hormones and their mechanism of action
14	III/ Unit IV:	
	Cell &	Overview of developmental regulation, Platelet derived growth
	Differentiatio	factor (PDGF); Epidermal growth factor (EGF), Insulin like
	n	growth factor (IGF), Nerve growth factor, Vascular endothelial
		growth factor (VEGF), Tumor necrosis factor (TNF) &
		erythropoietin, Fibroblast & muscle cell differentiation.
OCTOBER	III/IV	Formation of bodypattern in Drosophila, Apoptosis and
		apoptosome, Modes of action of TS genes - p110, p16, p21,
4		Phosphatase and tensin homolog (pTEN),p53 and c-Myc

s. Padma

The second

5

2

H-lai pol-

Head, Dept. of Bio-Chemistr Bhavan's Vivekananda Coll Sainikpuri, Secundershad-oou -

Academic Organiser (2018-19)

M.Sc- Sem-III

Bio chemistry: Paper-IV: BI 304T: Endocrinology and Metabolic Disorders Name Of the Lecturer: M.Usha

Month & No. of teaching days	Unit	Name of the Topic
June 9+5 Extra	Unit – I: Hormones and Endocrine glands	History of endocrinology, Organization and classification of hormones and endocrine systems, Basic mechanism of action of peptide hormones and receptors Basic mechanism of action of steroid , hormones and receptors, Chemistry physiology, and disorders related to Hypothalamus-Pituitary axis, Chemistry physiology, and disorders related to thyroid and parathyroid glands, Glycoprotein hormones (LSH, FSH, TH, hCG, POMC), Growth hormone family (GH, hCS Prolactin), Adrenal hormones, Gonadal hormones
July		Xenoestrogens and phytoestrogens
16+1 Extra	Unit – II: Endocrine regulation Unit – III: Disorders of Amino Acid and	Regulatory pathways (positive, negative, feedback loops), Regulation of biosynthesis of steroid hormones by peptide hormones (LH, FSH, ACTH) Endocrine regulation of growth, Endocrine regulation of stress, Endocrinology of Ca homeostasis, Endocrinology of blood sugar, hunger, digestion, and obesity Endocrine regulation of renal function, Endocrine regulation of cardiovascular system (angiotensin, BNP, ET1), Endocrinology of fertility (changes in menstruation, pregnancy, and menopause), Medical uses of steroid hormones (contraception, HRT, hydrocortisone, anabolic steroids), Erythropoietin, Adipo- cytokines, Orexins
	Carbohydrate Metabolism	Disorders of aromatic amino acid metabolism,
August 12	WELLOUISII	Disorders of proline and hydroxyproline metabolism, Disorders of lysine metabolism, Hemoglobinopathies; Thalassemia, Genetic defects in metabolism of amino acids (maple syrup urine disease, homocystinuria, methyl malonic Acidemia), Genetic defects in metabolism of urea (Argininemia ArignosuccinicAcidemia, Carbamoyl Phosphate Synthetase-I deficiency) Disorders of glycogen storage, Disorders of fructose and Galactose metabolism
September 14	Unit – IV: Disorders of Lipids and Nucleic Acids Metabolism	Pentosuria, Diabetes Disorders of acid Lipase deficiency, Farber's disease, Neeman-Picks disease, Goucher's disease, Krabbe disease, Sulphatide-lipdosis disease,
October 3		Fabry disease, Downs and Turner's syndrome, Hyperuricemia and Gout, Hereditary Xanthinuria and Lesch-Nyhan syndrome

-H. Cai bd

Head, Dept. of Bip/Chemistry Bhavan's Vivekananda College Sainikpuri, Secunderabad-500 094

Academic organizer (2018-19) M.Com II YEAR (CBCS)

Semester - III Interdisciplinary Course (IDC): Nutrition & Diet Planning Name of the lecturer: Prity Mishra

	Month & no of	Unit	Name of the topic
	teaching days		
	June	Unit I	Food as source of nutrients, functions of food. Relationship between
	2	Introduction to	food, nutrition and health, Basic food groups and food pyramid.
	(4 extra)	Nutrition	BMI (Body mass index) and nutritional status. Glycemic index
5			
	July 4 (4 extra)	Unit I Introduction to Nutrition	Nutritive value of Foods: Cereals, Legumes, Nuts and Oil. seeds. Nutritive value of Foods: Milk and milk products, Egg and egg products, Meat, fish, vegetables and fruits. Role of fiber in human nutrition. Anti-nutritive factors, Trans fatty acids in food substances. Common approved food additives, Food allergens.
	August 6 (2 extra)	Unit II Nutrition in health and disease	Nutrition - Fitness, Athletics & Sports. Diet Plans for individual's daily food intake in health conditions of anemia and hypertension. Diet Plans for individual's daily food intake in health conditions of cardiovascular diseases and diabetes
	September 6	Unit II Nutrition in health and disease	Diet plan in pregnancy and lactation, Diet plan for child health, Calculation of calorific and nutritive value of foods, Food sanitation and hygiene, Common Food adulterants, Food Laws and standards.
(October 2	Unit II Nutrition in health and disease	Good cooking practices for preserving nutritive value of foods.

A fai ba

Head, Dept. of Bio-Chemist Bhavan's Vivekananda Colley Sainikpuri, Secunderabad-500 65-4

Department of Biochemistry

M.Sc (Biochemistry)II Year

SEMESTER III (2018-19)

Paper (SEC): Clinical laboratory diagnostics

Name of the lecturer: Dr.S.Padma

MONTH /no of teaching days	Unit	Name of the topic
JUNE 6	Ι	Specimen collection and processing, Handling of specimens
JULY 8	I	Haemaotology parameters, Autoanalyzer-Evaluation of different biochemical parameters in an autoanalyzer.
August 8	II	Collection and preservation of urine samples, Urine analysis, measurement of blood pressure, Histopathology, Tissue sectioning and staining
September 6	II	ECG, Quality control and assurance in labs
October 2	II	Dispatch of reports with clinical correlations

S. Padme

it fai bad

Head, Oopt, of Stock herman Classifies Vie Autor 2009 Na Nard Sterror Collades

BHAVAN'S VIVEKANANDA COLLEGE OF SCIENCE, HUMANITIES AND COMMERCE Sainikpuri, Secunderabad-500094 Autonomous College Affiliated to Osmania University TEACHING PLAN: 2018-19

	TEACHING	FPLAN: 2010-19	\sim				
Program: M. S	Sc Biochemistry	Paper Title:	Enzymology $7 - 1$				
Name of the faculty:	Department:	Year/Semester:	No. of Classes per week:				
Dr.A.Sai Padma	Biochemistry	I/II	(4 hrs/week) 4 Credits				
Dr.A.sal Padma Biochemistry I/II (4 hrs/week) 4 Credits Learning Objective: To understand the role of enzymes in metabolism and their regulation.							

S.No	Month & Week	Unit s	Syllabus	Addition al Input/ Value addition	Teachin g Method	Student/ Learning activity
1.	December 4 th week	Ι	Properties of enzymes, protein conformation & catalyses		Chalk & Board	
2.	January 1 st week	Ι	Thermodynamics of catalysis, Energy of activation, Relation of ΔG and Keq. Coupled reactions (endergonic and exergonic) in biochemical pathways		Chalk & Board	
3.	January 2 nd week	Ι	Nomenclature and classification of enzymes Metal, co-factor, and co-enzyme requirements. Methods to isolate and purify enzymes		Chalk & Board	Exercise on enzyme nomenclature
4.	January 3 rd week	Ι	Assays, Activity Units and Specific activity High-Throughput enzyme assays		Chalk & Board., PPT	
5.	January 4 th week	Ι	Chemicals to identify active site residues: Arg, Cys, Lys, His. Site-directed mutagenesis to identify active site residues: Triose Phosphate Isomerase		Chalk & Board	
6.	January 5 th week	II	Single substrate assumptions, Michelis lis-Menten ki (derive equation and transformations)		Chalk & Board	Practice of derivation of M-M equation
7.	February 1 st week		Steady state, Briggs -Haldane equation.		Chalk & Board	

[P70]

١ ł

١

8.	February 2 nd week	II	Lineweavar Burk, Eadie Hofstee, Hanes plots. Bisubstrate reactions: sequential mechanism, compulsory order and random order mechanism Non – sequential mechanisms, ping – pong mechanisms.	Chalk & Board	Comparative analysis of all bi-substrate mechanisms
9.	February 3 rd week	II	Distinction between ordered and random addition of substrates and products release. Factors affecting catalysis (pH, temperature, pressure, enzyme and substrate concentration)	Chalk & Board	
10	February 4 th week	II	Enzyme inhibition: Types of reversible inhibitions – competitive, non-competitive, un – competitive and mixed inhibition. Irreversible inhibition-covalent modification (suicide inhibition). Substrate inhibition, feedback inhibition and allosteric inhibition.	Chalk & Board	Practice session of all inhibitions graphs
11	February 5 th week	III	. Chemical nature of enzyme catalysis: General acid – base, Covalent and metal ion catalysis. Transition state, proximity and orientation	Chalk & Board	
12	March 1 st week	III	Mechanism of co-enzymes: pyridoxal phosphate and flavin nucleotides,	Chalk & Board	
13	March 2 nd week	III	Catalytic mechanism of RNase Catalytic mechanism of Chymotrypsin, Trypsin Catalytic mechanism of Lysozyme Catalytic mechanism of Carboxypeptidase, Subtilisir	Chalk & Board	Test on mechanisms of enzyme catalysis.
14	March 3 rd week	III	Slow transition and Hysteretic behavior in enzymes. Catalytic RNA and catalytic antibodies Enzyme inhibitors as drugs: RT and Protease inhibitors as anti-HIV drugs	Chalk & Board	
15	March 4 th week	IV	Convergent and divergent evolution of enzymes Reversible and irreversible activation of e (phosphorylation, pro-enzymes) Enzymes activation by ligand binding and dime (protein tyrosine kinase receptors)	Chalk & Board	Ų
16	March 5 th week	IV	Allosteric enzymes; binding of ligands to pro cooperativity, Hill plot for Myoglobin and Hemogl sigmoidal kinetics; MWC and KNF models. Significance of sigm behavior. Study of ATCase as a typical allosteric enzyme.	Chalk & Board	Comparison of MWC and KNF models.

1

17.	April 1 st week	IV	Regulation of Glutamine Synthetase. Multiple forms of enzymes-Lactate dehydrogenase. Multi-enzyme complexes& significance -Fatty	Chalk & Board., PPT
			synthase complex.	

Learning Outcomes: Students will be able to gain concepts of enzyme catalysis, mode of action and their regulation.

Signature of the Faculty

Signature of the HOD

Academic organizer (2018-19) M.Sc I YEAR

Semester II, P-II Molecular Biology Name of the lecturer: Dr. Kiranmai. P

Month &no of teaching days	Unit	Name of the topic
January (17)	Unit I DNA Replication	Models of replication – random, conservative, semiconservative Prokaryotic and eukaryotic DNA polymerases, helicases, ligases, topoisomerases Initiation – primosome, ori-sequences, accessory proteins Elongation – replisome, leading and lagging strands, Okazaki fragments Termination, Inhibitors of replication. Replication of circular chromosomes by theta model -E. coli, ϕX 174.Replication of circular chromosomes by rolling circle (lambda phage) and strand displacement models (mt-DNA).Replication of linear chromosomes, telomeres, telomerase. Amplification – Polytene and double minute chromosomes. <i>In vitro</i> replication – PCR
	Unit II DNA Repair	Types of damage – oxidation, deamination, alkylation, adducts, breaks Direct repair – MGMT, photo-reactivation, AlkB. Base Excision Repair (Short and Long Patch)
February (11)	Unit II	Nucleotide Excision Repair. Mismatch Repair. Repair of DSBs by NHEJ and Homologous recombination. Holiday junctions and repair of collapsed forks SOS and bypass repair. Diseases due to defects in DNA repair. Roles of ATM, BRCA in DNA repair
	Unit III Transcription	Principles of transcription. prokaryotic RNA polymerases Bacterial transcription -Initiation – promoter sequences. Elongation and termination of transcription– rho dependent and independent Basal, Constitutive and regulatory levels of transcription.
March (27)	Unit III	Eukaryotic DNA dependent RNA polymerase -I (ribosomal repeats). Polymerase –II, Promoters and enhancers. Polymerase-III, 5s and tRNA. Post-transcriptional modifications - capping, Poly A addition. Splicing and RNA editing; Inhibitors of transcription.
	Unit IV Translation	Nature of genetic code, Wobble hypothesis. Ribosomes, structure, functional domain and subunit assembly Components and mechanism of translation. Initiation, elongation and termination of translation in Prokaryotes Initiation, elongation and termination of translation in Eukaryotes Inhibitors of protein synthesis. Translational controls.Non-ribosomal protein synthesis- antibiotic peptide. <i>In vitro</i> translational systems -Wheat germ, rabbit reticulocyte lysate and <i>Xenopus</i> Oocyte. Post translational modifications of proteins. Role in targeting (isoprenylation)

fai be A

Head, Dept. of Bio-Chemistry Bhavan's Vivekananda College Sainikpuri, Secunderabad-500 094

Academic organizer (2018-19) M.SC I YEAR

Semester II, P-III Biochemical Genetics and Model Organisms Name of the lecturer: M.Usha

Month & no of teaching days	Unit	Name of the topic
January (12 + 7 extra)	Unit I Mendelian Genetics	Mendel's Laws, Importance of meiosis in heredity Non-Mendelian Inheritance – Maternal effect, Maternal influence, Cytoplasmic inheritance. Gene interactions - Epistasis, Expressivity, Penetrance. Sex linked, sex limited, and sex influenced genes; Polygenic inheritance and polyploidy. Mutations (spontaneous / induced, somatic / germinal, forward / reverse, transition / transversions) Mutations (Silent, missense, nonsense, and frame shift mutations, conditional, leaky). Detection, selection & isolation of microbial mutants, Estimation of mutation rates. Reversion and suppression of mutations Mutagens – physical, chemical. Transposon mutagenesis, site-directed mutagenesis.
×	UnitII Linkage and Mapping	Discovery of linkage, Morgan's experiments Cytological proof of crossing over. 2- and 3- point crosses.
February (15 + 3 extra)	UnitII UnitIII Bacterial Genetics	 Recombination, Interference. Tetrad analysis. Mapping human genes by pedigree analysis; Fundamentals of population genetics (HW Law). Pedigrees of AR, AD, XR, and XD inherited traits Mobile genetic elements – Zea Ac, Ds and Spm elements <i>Drosophila copia</i>, Yeast Ty elements. Using recombination to make knockout cells / organisms. Discovery of conjugation. Mapping bacterial genes by conjugation Discovery of transformation. Mapping bacterial genes by transformation
March (16 + 2 extra)	UnitIII UnitIV Model Organisms	Discovery of transduction. Mapping bacterial genes by transduction Discovery of transposition. Structure of transposons, replicative and conservative transposition, use as mutagens. Mapping phage genes – Fine structure of rII locus: Complementation analysis. Fine structure of rII locus: Deletion mapping. Dictyosteliumto study cell – cell communication and differentiation. Saccharomyces to study homologous recombination in mating type switch; site of formation of buds. Neurosporato study one gene – one enzyme hypothesis. Drosophila to study embryonic development (homeotic mutations). C. elegansto study development and nervous system.Danioto study vertebrate development, GLO fish. Xenopusto study embryogenesis.
April (5)	UnitIV	<i>Mus</i> inbred and knockout strains, NOD and nude mice. <i>Zea mays</i> to demonstrate cytological proof of crossing over. <i>Arabidopsis</i> to study flower development.

A- lai la

Head, Dept. of Bio-Chemistry Bhavan's Vivekananda College Sainikpuri, Secunderabad-500 094

×

Bhavan's Vivekananda College of Science, Humanities and Commerce

Autonomous – Affiliated to Osmania University Accredited with "A" grade by NAAC Teaching plan 2018-19

Program:M.Sc(Biochemistry) Course Title (paper title):Biostatistics and Clinical Biochemistry

			1. 1.
Name of the faculty: Dr.S.Padma	Department: Biochemistry	Year/Semester: IWII	classes per week: 4
Learning objectives To explain the im experiments and discuss the biochemical	portance of statistical methods basis as well as the diagnosis o	that would be helpful i f diseases.	n designing

S.No	Month & Week	Uni ts	Syllabus	Additiona l Input/ value addition	Teaching method	Student/learning activity
1.	December /3 rd Week	Ι	Unit – I: Biostatistics-I Biostatistics fundamentals (sample, population, variable); Types of variables, Measurement and measurement scales Measures of central tendency (mean, median, mode)		Chalk and board Power point presentation	Problem solving
2.	December /4 th Week	Ι	Measurement of dispersion (range, variance, standard distribution) Study of bivariate data: correlation and regression;		Chalk and board Power point presentation	Problem solving
3.	January/1 ^s 'Week	I	Graphical methods to depict data (histograms, bar-plots, pie charts, line graphs), Probability and probability distribution (Normal, Binomial, Poisson), Student's t – test		Chalk and board Power point presentation	Problem solving

[PTU]

4	T /		Ohi annen teat Cartingener	1	Power point		ſ
4.	January/ 2 nd Week	Ι	Chi – square test; Contingency tests ,CRD: Completely Randomized Design; 1-way ANOVA, RCBD: Randomized		Power point presentation		
		II	Complete Block Design; 2-way ANOVA Unit II: Introduction to Clinical				
			Biochemistry Precision, reliability, reproducibility and other factors in quality control. Normal values in health and diseases.				
5.	January/ 3 rd Week	II	Radio isotopes in diagnosis. Specimen collection. Automation and QA in clinical laboratories.	-	Power point presentation		
6.	January/ 4 th Week	II	Examination of Urine, Blood, Sputum & CSF, Storage of specimens, Clinical laboratory informatics		Power point presentation		
7	February/ 1 st week	II	Renal function tests osmolarity and free water clearances, acute and chronic renal failure, Liver function tests Gastric function tests		Chalk and board		-
8	February/ 2 nd week	II	pancreatic function tests		Power point presentation	17 a.	
	2 2	Ш	Unit III: Pathophysiology Free radical metabolism, ROS in disease Plasma proteins in health and disease, Para proteinemias, proteinuria.				
9	February/ 3 rd week	III	Hyper lipo proteinemias and lipidemias Clinical application of plasma enzyme assays in cardiac, liver and skeletal diseases Jaundice- classification and differential diagnosis.		Power point presentation		
10	February/ 4 th week	Ш	Nutritional assessment therapy and monitoring Cholesterol, sodium and blood pressure Eating disorders: anorexia and bulimia.		Power point presentation	Short answer questions	
11	March/ 1 st week	III	Physiological interrelationship between cardiovascular, respiratory and renal systems.		Power point presentation		

-

5		IV	Unit IV: Molecular diagnosis of genetic defects: Pregnancy test, prenatal diagnosis & genetic counseling, Diagnosis of anemia, thalassemia.			
12	March/ 2 nd week	IV	Diagnosis of genetic diseases by molecular biology techniques (cystic fibrosis, hemachromatosis, thalassemia, sickle cell diseases).		Power point presentation	
13	March/ 3 rd Week	IV	DNA probes; restriction fragment length polymorphism (RFLP); polymerase chain reaction (PCR); Amplification of mRNA. AIDS, Clinical diagnosis.		Power point presentation	
14	March/ 4 th week	IV	Oncogenic enzymology: acid phosphatase, alkaline phosphatase, lactate dehydrogenase Body fluid constituents of use in oncology Newborn screening: PKU, tyrosinemia, aminoacidurias, organic acidurias.	-	Power point presentation	
15	April/ 1 st Week	IV	porphyrias Acetylcholinesterase and other tests on amniotic fluid; chromosomal abnormalities by cytogenetics		Power point presentation	
16	April /2 nd week		Revision		Previous year question papers	Assignments

biochemical changes to disease conditions

Signature of the Faculty

Signature of the HOD

Bhavan's Vivekananda College of Science, Humanities and Commerce Autonomous – Affiliated to Osmania University Accredited with "A" grade by NAAC Teaching plan 2018-19

Program: M.Sc(Biochemistry)

Course Title (paper title): Physiology and Xenobiotics p = 7

Name of the faculty:	Department:	Year/Semester:	No. of classes per week: 4
Dr.S.Padma	Biochemistry	II/IV	
	nderstand the physiology of ne fication process that helps in r		cle contraction, factors influencing

S.No.	Month & Week	Units	Syllabus	Additional Input/ value addition	Teaching method	Student/learning activity
1	November/ 3 rd week	1	Unit – I: Neurophysiology Types of neuronal cells – Neuroglia, microglia,		Power point presentation	
			astrocytes, oligodendrocytes, Schwann, satellite and epididymal cells Nerves:	Animation on nerve		
1) 11			regeneration of nerve fibers, generation of nerve impulse, all or none principle	transmission	10 10	
2	November/ 4 th week	1	Mechanism of synaptic transmission, transmission of nerve impulse, Types of		Power point presentation	
			neurotransmitters and their receptors, mode of signaling		Chalk and Board	
3	December /1 st Week	1	Electrical synapse and giant neurons, Division of vertebrate nervous system:		Power point presentation	
			CNS, PNS, ANS, regions of the brain Sensory organs – eye, ear, skin, tongue,			
			Vision: visual system, rhodopsin and classical GPCR mechanism, termination of visual signal.			
4	December /2 nd Week	I	Cone cells, specialization in color vision, physiology of colour blindness. Similarity between vision, olfaction and		Power point presentation	Solving multiple choice questions
			gustation. Unit – II: Structure and Physiology of Muscle			

[PT0]

5	December /3 rd Week	II	Structure of various types of muscle: striated, cardiac, smooth, fast twitch, slow twitch, Mechanism of muscle contraction, regulation of contraction, Role of actin and myosin in non-muscle cells. Cytochalasins and		Power point presentation	
6	December	II	cytokinesis. Muscle gene expression, regulation at transcriptional and posttranscriptional level. Role of muscle proteins in	Animation	Power point	
	/4 th Week	a	cell locomotion, Neuro- muscular transmission, Electromyography. Sherrington starling Kymograph (recording drum)	on electromyogr aphy	presentation	
7	January/1 st Week	Ш	Disorders of muscle (dystrophy, myopathy, monocytisis, myotonia, paralysis, Myasthenia gravis) Detection and treatment of muscle disorders, Unit – III: Human Reproductive Biology:		Power point presentation	Solving multiple choice questions
		III	Female reproductive system: anatomy and endocrinology, Causes of female infertility (acquired and genetic), treatments			
8	January/ 2 nd Week	III	Male reproductive system: anatomy and endocrinology, Causes of male infertility (environmental and genetic), treatments		Power point presentation	
9	January/ 3 rd Week	III	Puberty, reproductive aging (menopause and andropause) Gametogenesis and fertilization (natural and assisted (<i>in vitro</i>)), implantation and placenta Milestones in first trimester of pregnancy (http://www.ehd.org/virtual- human-embryo/)		Power point presentation	Short answer questions and answers

[contal?

10	January/ 4 th	III	Milestones in second	Power point	
	Week		trimester of pregnancy,	presentation	
			Milestones in third trimester		
			of pregnancy, child birth		
			Placenta as source of stem		
			cells, cord banking		
			Unit – IV: Liver and		
		IV	Xenobiotics		
			Liver functions,		
			pharmacopeia drug		
			deposition and mechanisms		
			of drug detoxification		
11	February	IV	Cytochrome P450 enzymes,		
	1 st week		molecular biology, catalytic		
			cycle, isozymes, inhibitors		
			Dose response relationship,	Chalk and	
			drug-receptors interactions	board	
12	February/	IV	Pharmacodynamics;	 Power point	
	2 nd week		pharmacokinetics, Phase I	presentation	
			reactions – modifications,	1	
			Phase II reactions –		
			conjugation		51
13	February	IV	Phase III reactions -	Power point	
	3 rd week		modifications and	presentation	
			elimination, Environmental	I	
			factors influencing drug		
			metabolism		
14	February/	IV	Effects and metabolism of	Power point	Short answer
	4 th week		model toxins: aflatoxins,	presentation	questions and
			bacterial exotoxins (types I,		answers
			II, and III) Nutrient drug		answers
			interactions – I and II		
15	March/1 st		Revision	Previous	Assignments
616Th	week			year question	
				papers	

Learning outcomes: Student will be able to compare neurotransmission with muscle contraction, relate reproductive physiology to infertility and examine the significance of detoxification processes in liver.

S. Indre-Signature of the Faculty

Signature of the HOD

.

Bhavan's Vivekananda College of Science, Humanities and Commerce Autonomous – Affiliated to Osmania University Accredited with "A" grade by NAAC Teaching plan 2018-19

Program: M.Sc(Biochemistry)

Course Title (paper title): Bioinformatics

P-TI

Name of the faculty: Dr.S.Padma	Department: Biochemistry	Year/Semester:	No. of classes per week:
		II/IV	4
Learning objectives: to explain the	importance of genomics, transci	riptomics and proteomic	es methods of analysis and
describe the concepts of synthetic ge	nes.		

S.No.	Month & Week	Units	Syllabus	Additional Input/ value addition	Teaching method	Student/learni ng activity
1	November/ 3 rd week	Ι	Unit – I: Genomics Genomics and branches of genomics (Why study a genome?), HGP and Strategies for sequencing genomes (shotgun and hierarchical sequencing),1st generation sequencing methods (Maxam and Gilbert Method; Sanger's method)		Power point presentation	
2	November/ 4 th week	Ι	2 nd and 3 rd Generation DNA sequencing methods (Next Generation Sequencing) Genetic and Physical maps of the genome, EST, STS, DNA sequence databases, Use of databases; data mining	Animation on next generation sequencing	Power point presentation	
3	December / 1 st Week	Ι	Comparing DNA sequences, pairwise local and global alignment, BLAST, FASTA, PAM and BLOSUM matrices		Power point presentation Chalk and board	Retrieving sequences from database
4	December / 2 nd Week	I	Multiple sequence alignments (Phylogenetic trees, Clustal-W, COBALT) Epigenomics and metagenomics		Power point presentation	Performing sequence alignments

[p 70]

		II	Unit – II: Transcriptomics Relation of transcriptome to genome and proteome (Why study a transcriptome?)			
5	December / 3 rd Week	П	Tools of transcriptomics: Northern blots, RNase protection assays, RT-PCR and Q-PCR HT tools of transcriptomics: Microarrays for expression profiling, alternate sequencing, HT RNA sequencing: SAGE, MPSS		Power point presentation	Insilico PCR
6	December / 4 th Week	II	RNA-Seq, GIGA Identifying expressed sequences by ChIP-seq, DNase-seq ENCODE Project (Encyclopedia of DNA Elements),		Power point presentation	
7	January/ 1 st Week	Π	Design and analysis of siRNA / RNAi for expression analysis; siRNA libraries Anti-sense oligos for regulating transcriptome, Regulation by miRNA, Extent and role of ncRNA		Power point presentation	
8	January/ 2 nd Week	ш	GWAS association with phenotypes Transcriptome databases (ESTs, Transcriptome Shotgun Assembly, ArrayExpress) Unit – III: Proteomics Relation of proteome to genome and transcriptome (Why study a proteome?) HUPO goals and accomplishments		Power point presentation	Solving multiple choice questions
9	January/ 3 rd Week	III	Methods for sequencing proteins: Edman degradation 2D gels and peptide maps MS – MALDI. LC-MS, Tandem MS (MS-MS) Micro-arrays for proteins	Animation on MALDI-TOF	Power point presentation	
10	January/ 4 th Week	III	Proteins motifs, sequences, and structure databases; Peptide sequence and MS profiles databases, Comparing protein sequences, alignment		Power point presentation	

A. Lai lad

11	February 1 st Week	III IV	Predicting secondary structure- <i>ab</i> <i>initio</i> , Homology folding, threading Post-translational modification (kinome, glycosylation) Unit – IV: Synthetic Biology Comparative genomics, evolution of human karyotype Sequencing genomes of individuals; ethical concerns,	Power point presentation	
12	February/ 2 nd Week	IV	SNPs and human disease Genomics for rational drug design and drug discovery, Pharmacogenomics	Power point presentation	
13	February 3 rd Week	IV	Nutrigenomics, Metabolomics PCR techniques to create synthetic genes and genomes	Power point presentation	
14	February/ 4 th Week	IV	Minimal genome concept Building an artificial phage; Building an artificial bacterium Metagenomics for study of ecological samples	Power point presentation	Short answer questions and answers
15	March/ 1 st Week		Revision	Previous year question papers	Assignments

S. Padma Signature of the Faculty

Signature of the HOD

Bhavan's Vivekananda College

of Science, Humanities and Commerce Autonomous – Affiliated to Osmania University Teaching Plan 2018-19

Program: M.Sc Biochemistry

Course Title (paper title): Biotechnology

Name of the faculty:	Department:	Year/Semester:	No. of classes per week:
S. Vanitha	Biochemistry	II / IV	4 hours/week (4 Credits)

Learning objective: To understand the influence of biotechnology with the use of microbes, animals and plants for the production of biotechnological products.

S. No	Month & Week	Units	Syllabus	Additional Input/ value addition	Teaching method	Student /learning activity
1	November 4 th Week	IV	Protein Engineering: Methods of immobilization of enzymes and cells, large scale production, Site directed mutagenesis, high throughput screening tools, Rational protein design and directed enzyme evolution,		Chalk & Board	
2	November 5 th Week	IV	Top 7 (Kuhlman <i>et.al</i>), Altering kinetics, pH, specific activity, increasing stability, pegylated interferon, macro modifications		Chalk & Board	
3	December 1 st Week	IV	Natural and recombinant fusion protein, tags for protein purification.		Chalk & Board	
4	December 2 nd Week	IV	Methods of drug design & delivery.		PPT	Multiple choice questions
5	December 3 rd Week	III	Animal Biotechnology: Development, maintenance and establishment of animal cell culture,		Chalk & Board	
6	December 4 th Week	III	Production of viral vaccines, IFN, tPA, high value therapeutics, urokinase, Cloning in mammalian and non- mammalian cells.		Chalk & Board	
7	January 1 st Week	III	Monoclonal antibodies, chimeric antibodies, immunotoxins as therapeutics.		Chalk & Board	
8	January 2 nd week	III	Gene knockout, transgenic animals and application, human gene therapy, humanized animals as organ farm.		Chalk & Board	
9	January 3 rd week	II	Plant Biotechnology: Plant cell culture, callus, protoplast fusion, differentiation to plantlets,	_	PPT	

[PTO]

P-111

			plant vectors- Ti plasmid		
10	January 4 th week	II	GM food and crops, terminator technology, anti- sense RNA, plantibodies.	PPT and Chalk & Board	
11	January 5 th week	II	Case studies of Bt cotton, Bt corn, Zeneca tomato paste.	PPT and Chalk & Board	
12	February 1 st week	II	Case studies on Flavr savr tomato, virus resistant plants, roundup ready, golden rice.	Chalk & Board and PPT	Google classroom
		Ι	Microbial Biotechnology: Large scale cultivation of microbes, fermenter design, downstream processing, production of biomass, SCP.		
13	February 2 nd week	Ι	Production of HFCS, cheese, low molecular weight compounds.	Chalk & Board	
14	February 3 rd week	I	Production of human insulin, interferon, human growth hormone, tPA, polysaccharides (xanthan gum, gellan, pullulan etc).	Chalk & Board	
15	February 4 th week	Ι	Microbial mining, Superbug, microbial degradation of oil - bioremediation of oil spills.	PPT and Chalk & Board	Multiple choice questions
16	March 1 st week	Ι	Enzymes for research and insecticides	Chalk & Board	

Learning outcomes:

Students will gain knowledge of basic protocols in the production of biotechnological products and apply this knowledge to work in industries involving downstream processing that are involved in the production of high value therapeutics.

Signature of the Faculty

Signature of the HOD

Academic organizer (2018-19) M.SC I YEAR

Semester IV, P-IV Microbiology Name of the lecturer: M.Usha

Month & no of teaching days	Unit	Name of the topic
November (3)	Unit I Fundamental Microbiology	Classification of bacteria, morphological types, distribution in nature.
December (6 + 2 extra)	Unit I	Isolation methods: Pure culture techniques & enriched cultures. Motility in bacteria. Staining methods (Gram's staining acid-fast & spore staining). Sterilization methods: Autoclaving, dry heat, filtration; Chemical disinfectants, and irradiation by gamma rays. Growth Media: Supplemented media, Selective media & minimal salts media. Maintenance and preservation of microbial cultures.
January (8 + 2 extra)	Unit I	Bacterial Growth: Growth curve doubling time. Factors affecting growth (pH, temperature, oxygen & agitation). Chemostat, continuous & synchronous cultures.
	Unit II Viruses	Discovery and general characteristics of viruses.Structure & composition of TMV, Cauliflower mosaic virus.One-step growth, single burst & eclipse experiments. General features of host-virus interactions- permissive and non-permissive hosts.
February (8)	Unit II	Lytic verses lysogenic life cycles of λ Phage. Assay methods (Plaque assay, Pock assay, heme agglutination assay, transformation assay). Purification methods (ultrafiltration, ultracentrifugation & affinity methods). Cultivation of viruses in animals & tissue culture. Life cycles of animal viruses (Poliovirus, Retroviruses (RSV/HIV).
March (1)	Unit II	Virusoids, viroids& prions.

Tai la H.

Head, Dept. of Bio-Chemistry Bhavan's Vivekananda College Sainikpuri, Secunderabad-500 094

Department of Biochemistry

THE MALL

Academic Organiser (2018-19)

M.Sc Biochemistry

Semester IV

N.

m

Skill enhancement course (SEC): Seminar

Schedule for student seminars

S.NO	Month	Date	Day	Names of the students
1	December	13 th	Thursday	J.Gunapriya, K.Geetha Lakshmi
2		20 th	Thursday	Niharika, Priyanka, Swarupa
3		27 th	Thursday	B.Priyanka, M.Sravani, J.Sravani
4	January	3 rd	Thursday	K.Haripriya, Aishwarya, Ch.Mounica
5		17 th	Thursday	Ch.Himantha, A.Anusha, Nikita
6		25 th	Thursday	P.Omkar, A.Mounika, M.Snigdha
7.	February	7 th	Thursday	I.Honey, R.Mounika

V- fai bad

Head, Dept. of Bio-Chemistry Bhavan's Vivekananda College Sainikpuri, Secunderabad-500 094

Academic organizer (2018-19) MBA II YEAR (CBCS)

Semester – IV (A and B Section) Interdisciplinary Course (IDC): Nutrition & Diet Planning Name of the lecturer: Prity Mishra

Γ	Month & no of	Unit	Name of the topic
	teaching days		
	November	Unit I	Food as source of nutrients, functions of food. Relationship between
	6	Introduction to	food, nutrition and health, Basic food groups and food pyramid.
	(2 extra)	Nutrition	BMI (Body mass index) and nutritional status. Glycemic index
		Unit I	Nutritive value of Foods: Cereals, Legumes, Nuts and Oil.
Ť	December	Introduction to	seeds. Nutritive value of Foods: Milk and milk products, Egg and egg
	5	Nutrition	products, Meat, fish, vegetables and fruits. Role of fiber in human nutrition.
	(2 extra)		Anti-nutritive factors, Trans fatty acids in food substances.
			Common approved food additives, Food allergens.
F	January	Unit II	Nutrition - Fitness, Athletics & Sports.
	6	Nutrition in	Diet Plans for individual's daily food intake in health conditions of anemia
	(2 extra)	health and	and hypertension. Diet Plans for individual's daily food intake in health
		disease	conditions of cardiovascular diseases and diabetes
+	F 1	T. '4 TT	Distalar in an annual lastation Distalar for skild backh. Coloulation
	February	Unit II	Diet plan in pregnancy and lactation, Diet plan for child health, Calculation of calorific and nutritive value of foods, Food sanitation and
	6	Nutrition in	hygiene, Common Food adulterants, Food Laws and standards. Good
	(1 extra)	health and	cooking practices for preserving nutritive value of foods.
		disease	cooking practices for preserving natitive value of foods.

Lai pad A.

Head. Dept. of Sio-Chemiss Thavan's Vivekananda Colle Sainikpuri. Secunderabad-500 ge-